AAI ATC Physics Formula Sheet — 2025 by mycollegeverse
Visit us at mycollegeverse.blogspot.com

Motion & Laws of Motion

Formula Description
\( v = u + at \) Velocity with acceleration
\( s = ut + \frac{1}{2} at^2 \) Displacement with acceleration
\( F = ma \) Newton's second law
\( P = Fv \) Power in terms of force and velocity

Work, Power, Energy

Formula Description
\( W = Fd \cos\theta \) Work done
\( P = \frac{W}{t} \) Power
\( K.E. = \frac{1}{2} mv^2 \) Kinetic energy
\( P.E. = mgh \) Potential energy

Gravitation

Formula Description
\( F = G \frac{m_1 m_2}{r^2} \) Newton's law of gravitation
\( g = \frac{GM}{R^2} \) Acceleration due to gravity
\( v_{escape} = \sqrt{\frac{2GM}{R}} \) Escape velocity

Current Electricity

Formula Description
\( V = IR \) Ohm's law
\( R = \frac{\rho l}{A} \) Resistance
\( P = VI = I^2 R = \frac{V^2}{R} \) Power in circuit
\( C = \frac{Q}{V} \) Capacitance

Heat & Thermodynamics

Formula Description
\( Q = mc\Delta T \) Heat energy
\( W = P\Delta V \) Work done in thermodynamics
\( \eta = \frac{W}{Q_1} = 1 - \frac{T_2}{T_1} \) Efficiency of Carnot engine

Kinetic Theory of Gases

Formula Description
\( PV = nRT \) Ideal gas equation
\( K.E. = \frac{3}{2} kT \) Kinetic energy per molecule

Oscillations

Formula Description
\( T = 2\pi \sqrt{\frac{L}{g}} \) Time period of pendulum
\( T = 2\pi \sqrt{\frac{m}{k}} \) Time period of spring-mass system
\( x = A \sin(\omega t + \phi) \) SHM displacement

Electric Charges & Fields

Formula Description
\( F = k \frac{q_1 q_2}{r^2} \) Coulomb's law
\( E = \frac{F}{q} = k \frac{Q}{r^2} \) Electric field
\( \Phi = EA \) Electric flux
\( p = q \times 2a \) Dipole moment

Electrostatic Potential & Capacitance

Formula Description
\( V = \frac{kQ}{r} \) Electric potential
\( C = \frac{Q}{V} \) Capacitance
\( \frac{1}{C_{series}} = \frac{1}{C_1} + \frac{1}{C_2} \) Series capacitance
\( C_{parallel} = C_1 + C_2 \) Parallel capacitance
\( U = \frac{1}{2} CV^2 \) Energy stored in capacitor

Moving Charges & Magnetism

Formula Description
\( F = qvB \sin\theta \) Force on moving charge
\( F = ILB \sin\theta \) Force on current-carrying wire
\( B_{circular\ loop} = \frac{\mu_0 I}{2R} \) Magnetic field of circular loop

Electromagnetic Induction

Formula Description
\( e = -\frac{d\Phi}{dt} \) Faraday's law
\( e = Blv \sin\theta \) Motional EMF
\( e = -L \frac{di}{dt} \) Self-induced EMF
\( e = -M \frac{di}{dt} \) Mutual-induced EMF

Alternating Current

Formula Description
\( i = I_0 \sin\omega t \) AC current
\( I_{rms} = \frac{I_0}{\sqrt{2}} \) RMS current
\( Z = \sqrt{R^2 + (X_L - X_C)^2} \) Impedance
\( P = V_{rms} I_{rms} \cos\phi \) Power in AC circuit

EM Waves

Formula Description
\( c = 3 \times 10^8 \, \text{m/s} \) Speed of light
\( c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} \) Speed of EM waves

Ray Optics

Formula Description
\( \frac{1}{f} = \frac{1}{v} + \frac{1}{u} \) Lens/mirror equation
\( m = \frac{h'}{h} = -\frac{v}{u} \) Magnification
\( P = \frac{100}{f \, (\text{cm})} \) Power of lens

Wave Optics

Formula Description
\( \beta = \frac{\lambda D}{d} \) Fringe width in diffraction
\( \Delta x = n\lambda \) Constructive interference
\( \Delta x = (2n - 1) \frac{\lambda}{2} \) Destructive interference

Dual Nature

Formula Description
\( E = h\nu \) Photon energy
\( K.E. = h\nu - W \) Kinetic energy in photoelectric effect
\( \lambda = \frac{h}{p} = \frac{h}{mv} \) de Broglie wavelength

Atoms

Formula Description
\( E_n = -\frac{13.6}{n^2} \, \text{eV} \) Energy of nth orbit
\( r_n = n^2 a_0 \) Radius of nth orbit
\( h\nu = E_{high} - E_{low} \) Photon energy in transition

Nuclei

Formula Description
\( E = mc^2 \) Mass-energy equivalence
\( BE = \Delta m \times 931.5 \, \text{MeV} \) Binding energy
\( T_{1/2} = \frac{0.693}{\lambda} \) Half-life

Semiconductor Electronics

Formula Description
\( R = \frac{\rho l}{A} \) Resistance
\( Y = A \cdot B \) AND Gate output
\( Y = A + B \) OR Gate output
\( Y = \overline{A} \) NOT Gate output

Relativity

Formula Description
\( \Delta t = \frac{\Delta t_0}{\sqrt{1 - \frac{v^2}{c^2}}} \) Time dilation
\( L = L_0 \sqrt{1 - \frac{v^2}{c^2}} \) Length contraction
\( E = mc^2 \) Mass-energy equivalence

Communication Systems

Formula Description
\( \lambda = \frac{c}{f} \) Wavelength
\( L_{antenna} = \frac{\lambda}{4} \) Antenna length